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Abstract: We present a miniature haptic module based on electrorheological fluid, designed for
conveying combined stiffness and vibrotactile sensations at a small scale. Haptic feedback is pro-
duced through electrorheological fluid’s controllable resistive force and varies with the actuator’s
deformation. To demonstrate the proposed actuator’s feedback in realistic applications, a method
for measuring the actuator’s deformation must be implemented for active control. To this end, in
this study, we incorporate a sensor design based on a bend-sensitive resistive film to the ER haptic
actuator. The combined actuator and sensor module was tested for its ability to simultaneously
actuate and sense the actuator’s state under indentation. The results show that the bend sensor can
accurately track the actuator’s displacement over its stroke. Thus, the proposed sensor may enable
control of the output resistive force according to displacement, which may lead to more informed
and engaging combined kinesthetic and tactile feedback.

Keywords: haptic actuator; electrorheological fluid; bending sensor; tactile sensor

1. Introduction

The recent rise in accessible, consumer-grade virtual reality has increased demand
for haptic devices that can enhance user experience. Haptic feedback provides a more
immersive experience by stimulating users through an additional and often underutilized
sensory channel: touch. The ability to feel and manipulate objects in an environment
(real or virtual), such as feeling the stiffness of squeezing a tennis ball in one’s hand or
feeling the opposing force of pushing open a heavy door, gives users a more realistic
sensory experience. This is especially true when combined with the more common visual
and auditory feedback [1,2]. Therefore, haptic feedback can benefit a variety of applica-
tions, including not only virtual reality, but also machine teleoperation, training tools and
simulators, gaming, accessibility, and entertainment [3–8].

For example, commercial touchscreen devices use haptic actuators to provide vibra-
tions to create eyes-free feedback that complements user input, such as vibrations during
typing to emulate the feeling of a physical keyboard [9,10]. Vibrating actuators are ca-
pable of notifying users and even invoking haptic illusions [11–13], but they fall short
of delivering truly realistic haptic feedback. To truly provide realistic haptic sensations,
devices must be able to take full advantage of the wide sensory range afforded by our
sense of touch. To do so, the combination of two feedback modalities is necessary: (1) tac-
tile and (2) kinesthetic [14]. Tactile feedback is sensed by mechanoreceptors in the skin
and provides information related to vibration, surface roughness, and textures [15,16].
Kinesthetic feedback is perceived as forces and torques by muscles, tendons, and joints,
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and provides information about position, movement, and force [17,18]. Therefore, when
designing interfaces and interactions based on touch, both modes of haptic feedback should
be present to convey realistic haptic sensations by covering the entire spectrum of human
haptic perception.

Unfortunately, much of the research on new haptic devices focuses on presenting either
kinesthetic or tactile feedback, rather than devices to provide both at once. The primary
reason for this divide is that while miniature tactile actuators have been widely studied and
commercialized, the development of miniature kinesthetic actuators has proven challenging
because of physical limitations. Most of the kinesthetic devices proposed so far have
adopted bulky commercial motors or pneumatic pumps to generate force feedback [19–23].
However, kinesthetic-scale motors and pumps are limited to tethered applications due to
their large size and power draw.

To overcome the limitations of traditional actuators, actuators based on smart mate-
rials have been identified as an attractive alternative because of their tunable properties,
mechanical simplicity, and conformability [24–30]. For example, piezoelectric actuators
have been used to generate vibrotactile feedback [31,32]; however, the forces produced
are too small to invoke kinesthetic sensations. Shape memory alloys, another smart ma-
terial, can provide kinesthetic forces by bending and pulling, but their refresh time is
not sufficiently fast to generate high frequency tactile sensations [33–35]. Additionally,
shape memory alloys often introduce unwanted heat into the system, which may interfere
with the intended haptic sensation. Thus, we identify a gap between these two materials’
properties: to achieve concurrent tactile and kinesthetic sensations, the ideal material must
be capable of generating high forces at fast rates, as well as easy to control with a subtle
stimulus. Under these criteria, smart fluids are an attractive candidate for their rapid,
stable response and ability to generate high yield stresses through their tunable viscosity.

Magnetorheological (MR) fluid, one such smart fluid, has been the basis for numerous
haptic devices [36–40]. Often these MR-based devices were designed to demonstrate the
potential of MR fluid-based designs but would be challenging to scale down for personal
electronics due to the limiting size of the electromagnetic coil needed to generate feelable
forces. Yang et al. [41–43] addressed this challenge by engineering a button type device for
providing congruent tactile and kinesthetic feedback in a sufficiently small form-factor for
mobile devices. Similarly, Heo et al. [44] designed a miniature haptic knob based on MR
fluids for providing torque feedbacks when twisted. Unfortunately, despite modeling and
optimization, designing MR actuators still requires precise manufacturing to produce the
miniature coil.

Electrorheological (ER) fluid has a field-dependent viscosity, much like MR fluid, but
instead responds to applied electric fields, rather than magnetic fields. Similar to MR
fluid, ER fluid-based devices feature fast response times, low power consumption, and
stability. However, ER fluid relies on simpler electrical control; only two electrodes spaced
approximately 1 mm apart are required. When compared to a coil, the electrode form
factor enables thinner, more mobile designs [45–47]. Past works have investigated ER
fluid for its ability to convey haptic feedback [48–51]. However, previous studies have
rarely focused on device miniaturization or providing combined tactile and kinesthetic
feedback. Mazursky et al. [52] demonstrated a thin, button-type actuator based on ER fluid.
Designing button-type actuators has long been studied in human–computer interaction,
but often requires combining separate actuators for each sensation or convincing the user
of displacement through haptic illusions [53–55]. In contrast, using smart fluids enables a
single mechanism for providing both sensations. Subsequent studies improved the design
by activating the fluid in both squeeze and flow modes, resulting in a wide range of forces
(2.4–6.2 N at maximum depth) and frequencies across the spectrum of human perception
(0–300 Hz) [56,57]. Furthermore, the device measured only 6 mm thick, making it a feasible
prototype for mobile designs.

To demonstrate this actuator in real-world applications, such as haptic rendering of
compliant objects, a method of sensing the actuator’s state is necessary to incorporate
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control of the sensation with respect to pressed depth [58]. In other words, incorporating a
sensing capability of the ER actuator to measure the displacement of the actuator’s contact
surface is critically important to control the actuator’s force output with respect to the user’s
finger position. Thus, the primary goals of this study are to embed a bending-sensitive
sensor within a haptic button actuator based on ER fluid, where sensations are generated
from fluid flow through charged electrodes due to the user’s press, and to experimentally
evaluate the ER haptic module with the embedded sensor. In the following sections, we
first detail the design of the proposed haptic module consisting of an electrorheological
haptic actuator with an embedded depth sensor to provide controllable feedback during
indentation, creating a tunable button. We evaluate the performance of the module by
first characterizing the sensor’s bend-sensitive resistance. Then, we mechanically test the
module’s combined sensing and actuation performance and assess the module’s ability to
provide various haptic force profiles.

2. Design and Characterization of the Haptic Module

The design of the haptic device is driven by a goal of closing the loop on actuation
by integrating a sensor into the device to enable more intelligent control. In the following
subsections, we first detail the actuator’s design and working principle, which acts as a
button with tunable indentation profiles based on ER fluid’s controllable viscosity. Then,
we introduce the sensor’s design, working principle, and integration into the haptic module.
Finally, we characterize the bending sensor’s resistance with respect to bend angle.

2.1. Design and Working Principle of Miniature ER Actuator

A prototype ER actuator capable of generating both tactile and kinesthetic sensations
was engineered in an earlier study by authors. While detailed design and experimental
results of the prototype actuator can be found in the study by Mazursky (2020), this section
intends to recollect the working principle of the ER actuator and its key performance as
background information in the context of the current study. Particularly, understanding
the dynamic force behaviors of the actuator would be useful for comprehending the
experimental results of the actuator with the embedded sensor.

Figure 1 illustrates the form factor and working principle of the cylindrical ER ac-
tuator. When a user presses upon the membrane surface, the grounded spring electrode
is displaced vertically, squeezing the fluid between the grounded spring electrode and
high voltage electrode (i.e., squeeze mode, shown in red in Figure 1). Due to the pressure
gradient from the press, fluid flows radially outward through parallel electrodes fixed in
place (i.e., flow mode, shown in blue in Figure 1). Hence, the actuator operates in both
squeeze and flow modes. To compensate for the change in volume due to pressing, the
actuator features radial slots allowing the membrane between the slots to deform elastically,
forming a reservoir (see Figure 1b). Upon releasing the press, the reservoir lowers, and
the actuator returns to its pre-pressed state due to the electrode spring and membrane’s
elasticity. When a voltage is supplied to the electrodes, the ER fluid’s suspensions form
fibrous networks parallel to the field lines between the electrodes. This microstructural
transformation results in yield stress with a magnitude corresponding to the applied field
strength. Therefore, the force felt by the user’s finger while pressing is a function of the
applied voltage. As the magnitude of the voltage increases, the force required to cause the
fluid to flow increases, providing a controllable range of kinesthetic feedback. By introduc-
ing a frequency to the applied voltage, the resistive force may fluctuate, resulting in various
tactile feedback responses. Thus, the user may feel a dynamic range of simultaneous
kinesthetic and tactile sensations.
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Figure 1. (a) Form factor of the ER fluid-based haptic actuator. Cross-section view of the working principle of the cylindrical
haptic actuator (b) pre-press and (c) mid-press. Reproduced with permission [56]. Copyright 2020, IOP.

Table 1 presents the actuator’s key dimensions and material properties. Notably, the
actuator measures only 6 mm thick and 42 mm in diameter, making it relatively small
compared to equivalent kinesthetic devices. The gap between the spring electrode and
HV electrode is initially 1.3 mm. The actuator may be pressed to a maximum depth of
1 mm, reducing this gap to 0.3 mm. The fixed electrodes are spaced at 1.8 mm apart. The
membrane consists of two layers. The contact layer is made of a PDMS film and is adhered
to the structure by acrylic tape (3M™ VHB 4910, MN, USA). The actuator’s internal volume
is filled with 2 mL of giant electrorheological (GER) fluid (Smart Materials Laboratory Ltd.,
Kowloon, Hong Kong), a type of ER fluid that exhibits a high yield stress nearly an order
of magnitude greater than that of conventional ER fluids [59,60].

Table 1. Descriptions and values of the actuator’s components.

Description Value Description Value

Initial spring electrode gap 1.3 mm Membrane thickness (PDMS) 0.43 mm
Spring electrode radius 4.7 mm Membrane thickness (VHB) 0.08 mm

Fixed electrode gap 1.8 mm Membrane radius 7.5 mm
Fixed inner electrode radius 7.5 mm Compensation chamber width 2.34 mm
Fixed outer electrode radius 11 mm Viscosity of GER fluid 0.060 Pa s
Maximum indentation depth 1 mm GER fluid yield stress at 5 kV/mm 80 kPa

Figure 2 illustrates the haptic capabilities of the actuator by measuring the force
generated over the actuator’s indentation under different excitation signals. As shown,
the actuator has a maximum indentation depth of 1 mm. Figure 2a presents the actuator’s
kinesthetic output. As the applied voltage increases, the resistive force increases due to
the fluid’s increasing yield stress. With no voltage applied, the maximum force posed by
the actuator was found to be 2.7 N at maximum depth. The maximum force produced
by the actuator was about 6.2 N under a 4 kV load. These forces are sufficiently large to
give many distinguishable levels of feedback to users based on the stiffness just-noticeable-
difference [61]. Additionally, as shown in Figure 2b, introducing a frequency (i.e., 5 Hz sine
wave as shown) to the applied signal results in tunable levels of tactile feedback.
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However, prior work only evaluated the actuator as an open-loop device; the actuator
provided haptic output, but without any sense of the provided input. Thus, the focus
of this article is to develop a combined actuation and sensing module to provide closed-
loop haptic feedback. By closing the loop, the actuator may provide controllable haptic
feedback with respect to depth, such as emulating the click of a button at a specific pressed
depth. Therefore, the module may provide more granular feedback, resulting in a more
capable interface.

2.2. Working Principle and Implementation of the Bending Sensor

To demonstrate the haptic actuator as a more robust haptic interface that communicates
digital information between the haptic device and a computer or microcontroller, the
actuation loop must be closed. To control the output signal (resistive force and vibration
frequency) of the haptic actuator based on the input (speed and position of the actuator’s
indentation), a sensor must be introduced into the actuator’s design. To this end, we place a
bending sensor on top of the membrane design, as shown in Figure 3. The sensor operates
as a bend-sensitive resistor coupled to the membrane’s deformation to track its indentation.
The sensor’s working principle is based on its strain-sensitive resistance. As shown in
Figure 3b, the sensor is made from a flexible substrate doped with conductive particles.
The sensor consists of multiple thin layers. The polyimide (PI) shielding layer protects the
sensor from external noise from the nearby high voltage. The polyethylene terephthalate
(PET) base frame provides structural support for the sensor to bend elastically. The flexible
electrode, which is coated with a polymer-based ink dispersed in a mixture of metal
particles and carbon black powder, is used to pass voltage through the conductive layer. To
make the flexible electrode work as a bend-sensitive resistor, the fabricated sensor was bent
excessively on a curved surface to create initial nanoscale cracks between the metal particles
in the electrode [62,63]. The nanoscale cracks between metal particles formed on flexible
electrodes enable variable conductivity between adjacent crack junctions depending on
the degree of external bending. Here, the carbon black power forms electrically weak
interconnections between the cracks in the metal powders, preventing complete electrical
separation during bending.
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fills its volume is rendered as transparent.

Figure 3c shows the working principle of the sensor at macroscale. When the sensor is
not bent, the particles are packed closely together giving rise to greater conductivity and
lower resistance. When the sensor is bent, the conductive particles are spread farther apart,
thereby increasing the resistance. By placing the sensor in a voltage divider circuit (see
Figure 3c) and probing the output voltage with a microcontroller, the indentation depth
may be tracked by a computer in real-time and fed into a control system. The module was
designed such that three sensors may be placed within the actuator to track the indentation
to ensure additional accuracy against interference from the actuator’s high voltage, as
shown in Figure 3d. Moreover, a low-pass software filter was applied to the sensor’s analog
data stream to reduce noise introduced by the high voltage line.

To characterize the proposed sensor’s resistance with respect to bend angle, a testing
platform was constructed, as shown in Figure 4. The sensor was fixed to the stationary
base and the sensor tip was magnetically secured to a platform attached to a stepper motor.
As the motor turns, the sensor bends. At each angle, the sensor’s resistance is read using
an analog input.
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incrementally bending the sensor and recording its resistance. (b) A closeup view of the test platform
demonstrating bending at precisely controlled angles.

Figure 5 shows the characterization curve for the bending sensor: resistance (kΩ) vs.
bending angle (deg). As shown, for positive angles (i.e., expansion), the sensor exhibits a
nearly linear response from about 250 kΩ at 0 deg to 850 kΩ at 90 deg. Across the angles
tested, the sensor elastically returns to its initial state. Thus, the sensor is predictable and
may be integrated into our haptic module.
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3. Evaluation of the Haptic Module

Having characterized the bending sensor and finding it to have stable performance
in isolation, we now integrate it into our haptic module and evaluate the entire system’s
performance. The following subsections detail the module’s performance under static and
dynamic conditions.

3.1. Static Testing

Figure 6 shows the test platform that was constructed to first evaluate the actuator
under static loads. Figure 6a shows a photo of the ER haptic module embedded with three
bending sensors. The sensors are 120 degrees apart in a radial arrangement to increase
the accuracy of the displacement reading. As shown in Figure 6b, the haptic module was
held in place and a piston was used to press an adjustable mass the against the actuator’s
contact surface. By stacking masses on top of the piston, the applied static pressure may be
controlled. As the pressure increases, the piston presses the actuator’s surface deeper. Four
masses were used to discretely step up the indentation depth, which was measured by the
bending sensor. Using the Arduino setup shown in Figure 6c, the output voltage of the
sensors was collected and processed to determine and log the actuator’s displacement. In
the voltage divider circuit, 5 V was used as the supply voltage and a 100 kΩ resistor was
used as the reference resistor. During this test, a sine wave (±4 kV, 3 Hz) was applied to
excite the actuator.
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Figure 6. Static testing setup: (a) fabricated haptic module (ER actuator with embedded sensors); (b) test platform using
adjustable masses to press the actuator; (c) sensing circuitry for logging the data over serial.

Figure 7 shows the measured voltage across the sensor with respect to time. Each
mass weighed 107 g and additional mass was added at 10 s intervals. Each individual
sensor’s reading was logged, together with the average reading. As shown, the sensors had
a small degree of variance across their readings. This may be attributed to the piston head
not covering the module’s entire contact area and therefore not evenly applying pressure to
all three bending sensors. However, as more mass is added, the readings from each sensor
begin to converge. This is likely a result of how the piston displaces the module’s contact
area. Initially, a lower mass only displaces the contact area directly below the piston. As
the displacement grows larger, the displacement area also increases because of the elastic
properties of the actuator. With enough mass, the entire contact area will displace, resulting
in all three bending sensors equally reading the displacement. In addition, the voltage
output reaches a maximum after sufficient mass is added to fully depress the piston to
the bottom of the actuator. However, it is important to note that the discrepancy in sensor
readings reflects what would be expected from real-world interaction, where a user does
not necessarily press directly at the center of the module every time. Therefore, taking the
average of the three sensors provides sufficient redundancy. As shown, the sensors can
accurately respond to changes in the applied mass, and thus the indentation depth.
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3.2. Dynamic Testing: Experimental Setup

Finally, to evaluate the performance of the complete prototype haptic module, mechan-
ical analysis was conducted using a dynamic mechanical analyzer (RSA3, TA Instruments).
Figure 8 shows the complete experimental setup. This experimentation measured the total
resistive force with respect to indentation depth over the button’s stroke of up to 1 mm.
In all testing, a constant indentation rate of 1 mm/s was used as an approximation of a
typical human press. By holding the press depth and rate constant, we focus our analysis
solely on the actuator’s field-dependent response [64]. We used an indentation tool similar
in size to that of a human finger. We used an Arduino Uno to log the sensor readings and
to control the actuator’s feedback via the applied frequency and voltage (stepped up from
low voltage to high voltage by a Trek Model 609E-6, 1000 V/V).
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3.3. Dynamic Testing: Experimental Results

Our first test examined the sensor’s ability to accurately track the indenter during
the press. Figure 9 shows the force generated by the actuator overlayed with the depth
tracked by the sensor over time. Depth was determined by linearly mapping the sensor’s
maximum and minimum readings to 0 and 1 mm, respectively, as enabled by the sensor’s
linear response to bending. Three excitation signals were used: (a) 0 kV, i.e., off-state;
(b) 4 kVDC; and (c) ± 4 kV sine wave at 3 Hz. As shown, two indentations were performed
(i.e., the actuator was compressed and released two times); these results indicate that
the sensor is effective at following indentation depth across multiple loading cycles and
excitation conditions. Furthermore, adding the sensor does not significantly impede
upon the generated kinesthetic and tactile sensations, as evidenced by the increased peak
forces in the 4 kVDC condition and the oscillations present in the force curve for the
sinusoidal condition.
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Having found the sensor to be dynamically accurate, we look now to use it to inform
our controller for actuator output. The added sensor can be used to programmatically
switch the actuator’s response on and off, as shown in Figure 10. Here, we program turning
on the high voltage (2, 3, and 4 kV) at 0.6 mm into the stroke (see Figure 10a). As shown in
Figure 10b, when the voltage was switched on, the force curve’s slope increased according
to the magnitude of the applied voltage, where increased voltage resulted in increased
force. To best examine the electrorheological effect, Figure 10c isolates the force due to the
fluid’s viscosity change from the total force by subtracting the actuator’s passive resistance,
i.e., the actuator’s force–displacement curve when no voltage is applied. As shown, the
force due to the ER effect rises rapidly at 0.6 mm when the high voltage is switched on.
For the 2 kV applied voltage, the applied voltage triggered about 0.4 N maximum due to
the ER effect. For 3 kV, about 0.7 N was generated. The greatest effect was observed for
4 kV, which produced about 1.1 N at maximum depth. This type of switching response can
be used to emulate a button that has “bottomed out” or contacted a spring, causing the
button’s stiffness to increase significantly.

To determine whether these changes in force are perceivable to end users, the perfor-
mance must be compared to a perception threshold known as the just-noticeable-difference
(JND). The JND denotes the degree to which a stimulus must change to be noticed by a
user. In the case of a change of stiffness, the metric used for the JND is the force rate. The
force rate is defined as the ratio of the difference between the maximum (the force output
with voltages applied) and the minimum (i.e., the force output with 0 kV applied) force
to the maximum force. The threshold for which humans can reliably feel changes in force
is known to be about 7–10% for forces between 0.5 and 200 N [61]. Figure 10d shows the
force rates across the actuator’s stroke for each voltage step. As shown, when the step-on
voltage switches on at 0.6 mm, the force rate increases for all voltages, where the 4 kV
excitation resulted in the highest peak force rate of about 25%. All curves peak above the
7–10% threshold, indicating that the stiffness change because of the voltage being stepped
on is noticeable to end users.
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due to the ER effect; (d) force rate with respect to indentation depth focused on the effect of the
step excitation.

Furthermore, the sensor can be used to switch the actuator response on and off rapidly,
as shown in Figure 11. Here, we prescribe pulsing high voltage (2, 3, 4 kV) on at 0.6 mm
and off shortly after (~25 ms, illustrated in Figure 11a; ER fluid has a response rate of
~5 ms [65], so this is sufficient to get a complete change in pressure). Figure 11b shows
the actuator’s response to the step input. As shown, when the voltage pulse is applied
at 0.6 mm depth, the slope of the force curves increases. As expected, the response is
greatest with greater voltage. To best examine the electrorheological effect, Figure 11c
isolates the force due to the fluid’s viscosity change from the total force by subtracting out
the actuator’s passive resistance, i.e., the actuator’s force–displacement curve when no
voltage is applied. As shown, the force due to the ER effect rises rapidly at 0.6 mm when
the voltage pulse is applied. For the 2 kV applied voltage, the pulse triggered about 0.6 N
due to the ER effect, whereas for 4 kV, about 0.8 N was generated. By closing the loop,
the module can determine when to provide a pulse, for example, to emulate the clicking
sensation of a tactile button [53].

Again, to find whether the change in stiffness resulting from the pulse excitation is
noticeable can be determined using the JND. Figure 11d shows the force rates across the
actuator’s indentation for each pulsed voltage. As shown, when the voltage pulse triggers
at 0.6 mm, the force rate increases for all voltages, where the 4 kV excitation resulted in the
highest peak force rate of about 31%. All curves peak above the 7–10% threshold, indicating
that the stiffness change because of the voltage being stepped on is noticeable to end users.
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tation depth; (b) force–depth curve for 2, 3, and 4 kV pulses; (c) isolated force due to the ER effect;
(d) force rate with respect to indentation depth focused on the effect of the pulse.

Finally, to demonstrate controlling the actuator’s output over the entire indentation,
we map the depth to the actuation frequency of an applied 4 kV square wave, as shown
in Figure 12. At 0 mm depth, the frequency is set to 5 Hz. Over the 1 mm stroke, the
frequency increases linearly to 10 Hz, as shown in Figure 12a. The actuator’s response is
presented in Figure 12b. As shown, the force–depth curve contains oscillations that increase
in frequency with respect to depth, as programmed. To best see this effect, we again isolate
the force due to the ER effect from the total force by removing the off-state response from
the signal, shown in Figure 12c. As seen in the plot, the output frequency was effectively
mapped to depth using the proposed sensor and control method. This result demonstrates
the module’s potential to take in an arbitrary control signal with respect to depth and
render it as combined kinesthetic and tactile sensation when pressed by a user.
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4. Conclusions

This article presents a closed-loop haptic module based on the tunable viscosity of ER
fluids. By combining an ER haptic actuator with a bending sensor, a method for controlling
the desired actuation force over the actuator’s stroke is possible. In our experiments, we
characterized our custom bending sensor and found it to have a nearly linear response with
respect to bend angle, making it suitable for sensing the state of the actuator’s indentation.
In subsequent studies, we tested the sensor’s static and dynamic response when embedded
in the actuator. We investigated the haptic module’s ability to give controlled outputs with
respect to indentation depth. Specifically, we examined the system’s ability to present
tactile pulses, kinesthetic step-on, and mapping the frequency sensation to the pressed
depth. The results of these studies indicate that the module can offer controllable haptic
sensations. This work may lead to a haptic interface that can render both tactile and
kinesthetic sensations while maintaining a compact form factor. We envision this being
used to produce numerous effects (for example, rendering the stiffness and tactile properties
of different deformable materials) in haptic applications, such as games, mobile devices,
and simulations. To achieve haptic sensations beyond the simple outputs presented in this
study, a control scheme that better accounts for the device’s nonlinearity together with the
unpredictable behaviors of real users is necessary [66–69]. Additionally, we acknowledge
that our sensor design is one of many techniques that may be used to detect the actuator’s
state, such as pressure-sensitive films directly integrated into the membrane’s PDMS [70,71]
or flow sensors within the device itself [72,73]. In addition to the proposed strain sensor,
which tracks the interface’s input, i.e., pressed depth, future work may incorporate a stress
sensor to also monitor the device’s force output in real-time.

Traditionally, within the field of haptics, providing simultaneous kinesthetic and
tactile feedback would require combining two different actuators, such as a motor or linear
actuator and a linear resonant actuator, eccentric rotating mass, or piezoelectric motor. The
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fast response time and controllable resistive force offered by smart fluids enable both modes
of feedback in a single package, such as the ER actuator presented in this article. We believe
that smart materials and structures may continue to contribute to the future of haptic
interfaces, but future work will require additional engineering to further miniaturize the
footprint of control electronics to enable more mobile applications. Additionally, drawing
from advances in soft electronics and sensors may lead to more wearable use cases.
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